Zu DT-Übung 8.2

(Lösungsvorschlag)

Die vollständige Schaltfunktion enthält 4 Spalten mit den $2 \cdot 2 = 4$ Bits a_1 , a_0 , b_1 , b_0 der beiden Zahlen A und B sowie 3 Spalten X, Y und Z für die 3 Fälle

$$X = 1 \rightarrow A < B$$

$$Y = 1 \rightarrow A = B$$

$$Z = 1 \rightarrow A > B$$
.

Die 4 Bits treten in 2⁴ =16 verschiedenen Permutationen auf, daher sind 16 Zeilen vorzusehen:

Fall	a ₁	b ₁	a ₀	b ₀	X A <b< th=""><th>Y A=B</th><th>Z A>B</th></b<>	Y A=B	Z A>B
0	0	0	0	0	0	1	0
1	0	0	0	1	1	0	0
2	0	0	1	0	0	0	1
3	0	0	1	1	0	1	0
4	0	1	0	0	1	0	0
5	0	1	0	1	1	0	0
6	0	1	1	0	1	0	0
7	0	1	1	1	1	0	0
8	1	0	0	0	0	0	1
9	1	0	0	1	0	0	1
10	1	0	1	0	0	0	1
11	1	0	1	1	0	0	1
12	1	1	0	0	0	1	0
13	1	1	0	1	1	0	0
14	1	1	1	0	0	0	1
15	1	1	1	1	0	1	0

Die markierten Permutationen verweisen auf die 6 Fälle A>B. Die Funktion für Z ergibt sich aus der DNF für die 6 Minterme:

$$Z = \overline{a_1} \, \overline{b_1} \, a_0 \, \overline{b_0} \vee a_1 \, \overline{b_1} \, \overline{a_0} \, \overline{b_0} \vee a_1 \, \overline{b_1} \, \overline{a_0} \, b_0 \vee a_1 \, \overline{b_1} \, a_0 \, \overline{b_0} \vee a_1 \, \overline{b_1} \, a_0 \, b_0 \vee a_1 \, b_1 \, a_0 \, \overline{b_0} \quad .$$

Diese Funktion lässt sich über das folgende KV-Diagramm vereinfachen. Für die "Einkreisungen" der Minterme gelten die Regeln:

 Nur senkrecht oder waagerecht benachbarte "1"-Elemente dürfen zusammengefasst werden.

- "1"-Elemente am oberen und unteren Rand (bzw. am linken und rechten Rand) sind benachbart.
- Es dürfen 2, 4 oder 8 "1"-Elemente zusammengefasst werden.
- Minterme können mehrfach eingekreist werden.
- Bereits vollständig durch vorherige Einkreisungen erfasste Minterme werden nicht noch einmal eingekreist → bei jeder neuen Einkreisung muss wenigsten ein neues "1"-Element dazukommen.

	а	l ₁	ā		
b₁		1			b_0
					b ₀
b₁	1	1			D ₀
	1		1		\overline{b}_0
	$\overline{a_{\scriptscriptstyle 0}}$	a ₀		$\overline{a_{\scriptscriptstyle{0}}}$	

Ergebnis: $Z = a_1 \overline{b_1} \vee a_1 \overline{b_0} a_0 \vee \overline{b_1} a_0 \overline{b_0}$

Frage: Sind gleichwertige Varianten möglich?

Realisierung mit NOR-Gattern:

• Durch doppelte Negation den Gesamtausdruck zum negierten NOR umwandeln:

$$Z = \overline{a_1 \, \overline{b_1} \vee a_1 \, \overline{b_0}} \, \overline{a_0} \vee \overline{b_1} \, \overline{a_0} \, \overline{b_0}$$

• Die 3 Konjunktionen durch doppelte Negation erweitern:

$$Z = \overline{\overline{a_1}\overline{b_1}} \vee \overline{\overline{a_1}\overline{b_0}} \overline{a_0} \vee \overline{\overline{b_1}} \overline{a_0} \overline{\overline{b_0}}$$

• Auf jede Konjunktion die DeMorganschen Gesetze anwenden:

$$Z\!=\!\!\overline{(\overline{\overline{a_1}\!\vee\! b_1})\!\vee\!(\overline{\overline{a_1}\!\vee\! b_0\!\vee\! \overline{a_0}})\!\vee\!(\overline{b_1\!\vee\! \overline{a_0}\!\vee\! b_0})}$$

Man benötigt demnach

- 4 NOR-Gatter mit 2 Eingängen (warum 4?)
- 3 NOR-Gatter mit 3 Eingängen (warum 3?)**)

Eine andere Realisierung ist mit Hilfe der verkürzten Wahrheitstabelle und 1-Bit-Komparatoren wie im Skript, Kapitel 11.4, Seite 11-4, beschrieben möglich:

Fall	a₁	b ₁	a ₀	b ₀	Х	Y	Z
1	a ₁ > b ₁		x	x	0	0	1
2	$a_1 = b_1$		$a_0 = b_0$		0	1	0
3	$a_1 = b_1$		$a_0 > b_0$		0	0	1
4	$a_1 = b_1$		a ₀ < b ₀		1	0	0
5	a₁ ·	< b ₁	х	х	1	0	0

Frage: Welchen 16 Fällen der vollständigen Tabelle entsprechen diese 5 verkürzten Fälle?

Zusatzaufgabe: Bauen Sie anhand dieser verkürzten Tabelle eine Schaltung mit 1-Bit-Komparatoren und weiteren Logik-Gattern auf.

 $^{^{*)}}$ 2 Stück zum Negieren von a_1 und a_0 , 1 Stück für das NOR des ersten Terms und 1 zum Negieren des Gesamtausdrucks

^{**) 2} Stück für das NOR des zweiten und dritten Terms, 1 Stück für das NOR aller drei Terme